Article: Vision and Reading Deficits in Post-Concussion Patients: A Retrospective Analysis Barry Tannen, OD, *Private Practice, Hamilton Square, NJ and SUNY College of Optometry, Vision Rehabilitation Service* Reagan Darner, OD, Salem VA Medical Center Optometry Service Kenneth J Ciuffreda, OD, PhD, SUNY College of Optometry, Department of Biological and Vision Sciences Jack Shelley-Tremblay, PhD, *University of South Alabama, Department of Psychology* Jenna Rogers, OD, Resident in Vision Therapy and Neuro-Optometric Rehabilitation, EyeCare Professionals, PC Hamilton Square, NJ ### **ABSTRACT** The prevalence of vision deficits in the pediatric/young adult concussion population in the private optometric practice setting remains unknown. Thus, a retrospective chart review in this area was conducted in the practice of the first author. Twenty-five consecutive patients with a medical diagnosis of concussion received a comprehensive vision and ocular Barry Tannen, OD, FCOVD, FAAO Hamilton Square, New Jersey 1978, Colgate University, Biology 1982, Pennsylvania College of Optometry Private Practice, Hamilton Square, NJ Associate Clinical Professor, SUNY College of Optometry Program Supervisor, Vision Therapy and Neuro-Optometric Rehabilitation Residency (Southern College of Optometry) health examination, which also included an objectively-based Visagraph reading assessment and clinical vergence/accommodative facility testing. Three primary categories of oculomotor-based deficits were found: convergence insufficiency (56%), accommodative insufficiency (76%), Correspondence regarding this article should be emailed to Barry Tannen, OD, at btannenod@aol.com. All statements are the author's personal opinion and may not reflect the opinions of the College of Optometrists in Vision Development, Vision Development & Rehabilitation or any institution or organization to which the author may be affiliated. Permission to use reprints of this article must be obtained from the editor. Copyright 2015 College of Optometrists in Vision Development. VDR is indexed in the Directory of Open Access Journals. Online access is available at http://www.covd.org. Tannen B, Darner R, Ciuffreda K, Shelley-Tremblay J, Rogers J. Vision and reading deficits in post-concussion patients: A retrospective analysis. Vision Dev & Rehab 2015;1(3):206-13. **Keywords:** accommodation, abnormal binocular vision, concussion, mild traumatic brain injury (mTBI), optometry, reading deficits, reading rate, vergence, version, vision deficits and oculomotor-based reading dysfunctions (68-82%). The most common symptom was headaches (84%), with 25% of the symptoms related to reading. 68% (15/22) were categorized as reading at least 2 grade levels below their current school grade level for reading eye movements based on the Visagraph findings. These overall findings are consistent with the general oculomotor-based/reading findings in the concussion/mTBI literature. The present results have important practical ramifications regarding the importance of preconcussion baseline oculomotor and Visagraph testing, as well as post-concussion follow-up testing, to help assess a student's ability to return-to-learn (RTL). #### **INTRODUCTION** The topic of concussion/mild traumatic brain injury (mTBI) has come to the forefront of the clinical vision world due to the constellation of visual problems/visual dysfunctions secondary to sports-related concussions/head injuries, 1,2 and also the recent war efforts. Vision problems are present in thousands of our soldiers and are likely in a similarly large but unknown number of athletes, especially in contact sports such as football, boxing, and soccer. However, the most common etiologies of a concussion are the result of motor vehicle accidents, assaults, and falls. Together, they represent a relatively large and important segment of patients examined by the contemporary neuro-rehabilitative optometrist. A concussion/mTBI results in a constellation of general sensory, motor, perceptual, linguistic, behavioral, cognitive, and psychological deficits.^{4,5} For example, an individual may report general headaches/migraines, short-term memory problems, muscle stiffness and spasms, chronic fatigue, and impulse control issues. More specific to the present paper, they can manifest a wide array of visual problems, such as blur, intermittent diplopia, oculomotor-based reading difficulties, and impaired visual memory, to name a few. 4-6 Presence of such visual deficits can have an adverse impact on an individual's vocational and avocational goals, as well as negatively affect the general rehabilitative process. 7,8 For example, impaired saccadic scanning and poor visual discrimination skills can hinder progress in cognitive rehabilitation-based visual search tasks incorporating a complex array of finely-detailed targets.7,8 Over the past decade, there have been a number of clinical studies focusing on the visual deficits found in the concussed/mTBI patient in hospital^{9,10} and academic¹¹⁻¹⁴ settings. In all cases, the prevalence of visual deficits, in particular those that are oculomotor based, has been well documented. Deficits of the vergence (e.g., convergence insufficiency), accommodative (e.g., accommodative insufficiency), and/or versional (e.g., saccadic inaccuracy) systems, with reading problems (e.g., skipping lines, rereading) being the primary symptom both in non-blast and blast-related concussion/ mTBI cases. 15 These findings suggest generality and pervasiveness of the traumatic event and correlated visual problems. For example, Ciuffreda et al. 16 determined the frequency of occurrence of oculomotor dysfunctions encompassing vergence, accommodation, version, strabismus, and cranial nerve palsy in 160 individuals with mTBI and reporting visual symptoms. Vergence system abnormality was the most common dysfunction: 56.3% of the population had one or more vergence-related abnormalities, with convergence insufficiency being most common (42.5%). In addition, 51.3% of the population manifested one or more versional dysfunctions, with saccadic deficits (e.g., saccadic dysmetria) being the most common anomaly. Among those who were below 40 years of age (51 out of the 160 subjects), 41.1% exhibited an accommodative dysfunction, with accommodative insufficiency (AI) being the most common problem. Strabismus in the form of constant/intermittent deviations was present in 25.6% of the population. In contrast, there has been a paucity of such studies that are based on the findings in the optometric clinical practice setting. To the best of our knowledge, the only one similar in setting to the current study was that of Hellerstein et al, 17 where adults (mean age 39 years) were assessed in her optometric practice. They tested 16 individuals with medically-diagnosed mTBI and compared them with 16 visually-normal, age-matched control subjects. A battery of clinical tests was performed with an emphasis on those that were binocular/oculomotor in nature. There were several significant differences (p<0.05) in the binocular/oculomotor clinical measures between the mTBI and control groups. The following findings were abnormal in the mTBI group: near point of convergence break and recovery, base-in vergence break and recovery at distance and near, base-out vergence recovery at distance, near cover test, pursuit tracking, and stereopsis; vertical phoria at near exhibited a trend (p=0.058). Furthermore, there were several significant differences (p<0.05) in symptoms between the two groups: blur, diplopia, and reading problems were much more frequent in the mTBI group. Hence, as found in other non-practice-based settings as described earlier, binocular/oculomotor clinical signs and related symptoms are more prevalent in the mTBI population. The purpose of the present optometric, clinical practice-based, record review was to extend the study of Hellerstein et al¹⁷ in children and young adults, with inclusion of objectively-based Visagraph assessment of reading ability, as well as dynamic facility assessment of vergence and accommodation. #### **METHODS** The clinical records of the consecutive patients referred with a medical diagnosis of concussion were reviewed from October 2011 through October 2012. These were all patients who were referred from physicians who specialized in concussion management. Excluded from the chart review were any patients with strabismus, amblyopia, ocular disease, developmental disabilities (such as autism spectrum disorder), neurologic disease, or psychiatric disorders which did not exist prior to the first concussion. Twenty five patients met the criteria for chart review. Two of these patients had a prior diagnosis of reading disability; they were included in the binocular/accommodative analysis, but excluded from the Visagraph reading eye movement analysis. Patient's ages ranged from 12 years to 31 years, with a mean of 17.1 years. There were 14 males and 11 females. Their last concussion was diagnosed from 1-35 months prior to the vision examination/consultation, with the average time being 5.2 months from last concussion to evaluation. Table 1 presents a summary of the tests performed on the concussion/mTBI patients. Included were those used in the basic refractive Table 1: Visual tests included in analysis. Symbols: pd=prism diopters, D=diopters, cm=centimeters, and sec arc=seconds of arc | lin | ica | .1 4 | test | |-----|------|-------------|------| | IIn | IICS | 11 1 | rest | Near cover test (pd) NPC break (cm) NPC recovery (cm) NRA (D) PRA (D) Monocular accommodative facility (cpm) Minus lens amplitude of accommodation (D) Near base in blur/break/recovery (pd) Near base out blur/break/recovery (pd) Distance base in break/recovery (pd) Distance base out blur/break/recovery (pd) Vergence facility (cpm) Stereopsis (sec arc) Visagraph (Reading rate and grade level efficiency) assessment, 18 as well as those typically performed in the specialty oculomotor/binocular-visionbased evaluation. 18 They were performed per standard clinical guidelines/protocols. 18,19 All testing was conducted with the patient's habitual distance spectacle correction in place, unless the new distance refraction indicated a change, or a near prescription was deemed appropriate. Some additional details include: distance and near phorias were assessed using the alternate cover test; the near point of convergence was measured with both an accommodative (20/30 letter at near) and a non-accommodative target (penlight)²⁰ each taken three times, with the most reduced value recorded; distance and near horizontal vergence ranges; negative and positive relative accommodation; and amplitude of accommodation (minus lens technique); all were assessed in the phoropter. Accommodative facility was tested using +/-2.00D lens flippers, whereas vergence facility was assessed using 12 base-out (BO)/3 base-in (BI) prism. Stereopsis was assessed using a Randot Test. Lastly, the Visagraph was used to assess reading eye movement efficiency.²¹ Two paragraphs were tested, with each being one grade level below the independent reading level.22 Then, a third **Table 2:** Vergence, accommodative, and reading deficits by percent (%) occurrence | Diagnosis | Percent | |---|-----------| | Diagliosis | Occurence | | - 44 | | | Convergence Insufficiency | 56% | | Near point of convergence of ≥6 cm break and | | | - Reduced positive fusional convergence at near (<20 pd or fails Sheard's criterion) or | | | - Vergence facility (distance or near) ≤9 cpm with more difficulty with base-out1 | | | Convergence Excess | 8% | | ≥3 pd esophoria at near and | | | - Reduced negative fusional convergence at near (<8 pd or fails Sheard's criterion) or | | | - Vergence facility at near ≤9 cpm
with difficulty with base-in¹ | | | Accommodative Insufficiency | 76% | | Amplitude of accommodation ≥2 diopters | | | below mean for age (15-1/4 age) or | | | Monocular accommodative facility ≤6 | | | cpm (difficulty with minus lenses) ¹ | | | Reduced Reading Rate ² | 82% | | Reduced Reading Efficiency ² | 68% | - 1. Adapted from Master et al¹⁰ - 2. Based on a Visagraph grade-level equivalent of 2 or more grades below their actual grade level | Table 3: Primary symptoms in order of frequency reported. | |--| | Headache (21) | | Light sensitivity (13) | | Skip/lose place (13) | | Blur (12) | | Visual motion sensitivity (11) | | Decreased reading comprehension (10) | | Eyestrain (9) | | Near diplopia (8) | | Dizziness/nausea (7) | | Decreased concentration (6) | | Decreased balance (6) | | Visual fatigue (5) | | Decreased reading speed (4) | | Words running together when reading (4) | | Distance diplopia (2) | | Poor depth perception (2) | paragraph, 5 grade levels below the independent reading level, was tested. This dual-level of testing differentiated between a linguistic versus oculomotor basis for the reading deficit. Lastly, if the individual could not obtain a 70% or better comprehension level on a given test paragraph, the grade level was reduced further, until they could attain this criterion. Due to the fact that this was a chart review, some clinical and Visagraph tests were missing. Hence, the actual number tested is specified in the tables out of a possible 25 patients. Due to the number of variables assessed in this study, the standard t-test analysis would produce a greater potential for false positive errors. Thus, to correct for this likely problem, a more rigorous test/criterion was used, namely the Holms method.23 Hence, effectively a more stringent alpha level was calculated to characterize each of the variables tested as being 'statistically significant' (p<0.05). #### **RESULTS** The 3 primary oculomotor/binocular diagnoses and their percentages are presented in Table 2. These included vergence dysfunction (64%), accommodative insufficiency (76%), and oculomotor-based reading dysfunctions (68% had reduced reading efficiency and 82% had reduced reading speed). The diagnosis of convergence excess was 8%. 92% of the patients had more than one such diagnosis. The primary symptoms are presented in Table 3 in order of the frequency reported out of the 25 patients. These were assessed through case history and as reported on a symptom questionnaire that is used in the primary author's private practice (Table 4). Only symptoms that were checked off as occurring "sometimes," "usually", or "always" were reported in Table 3. The most frequent symptom was headache (84%), whereas the least reported symptoms were distance diplopia and poor depth perception (8%). Four of the 16 symptoms (25%) related to reading at near (skipping or loss of place, decreased reading comprehension, decreased reading speed, and words running together when reading.) Table 5 presents the vision findings for the mTBI group as compared to Morgan's normative data.²⁴ There were several significant differences. Eight out of the 13 clinical tests (62%) were significantly different, i.e., abnormal when **Table 4:** Symptom checklist used in the primary author's private practice for patients with a history of ABI. Please consider each symptom and place a check in the box: 1 if never present, 2 rarely present, 3 sometimes present, 4 usually present, 5 always present | r asaany present, s anvays present | | | | | | |--|-------|--------|-----------|---------|--------| | | NEVER | RARELY | SOMETIMES | USUALLY | ALWAYS | | SYMPTOM | 1 | 2 | 3 | 4 | 5 | | Difficulty moving or turning eyes | | | | | | | Pain with movement of the eyes | | | | | | | Pain in or around eyes | | | | | | | Wandering eye | | | | | | | Double vision | | | | | | | Blurred vision, distance viewing | | | | | | | Blurred vision, near viewing | | | | | | | Slow to shift focus from far to near | | | | | | | Difficulty taking notes | | | | | | | Pulling or tugging sensation around eyes | | | | | | | Face or head turn | | | | | | | Head tilt | | | | | | | Covering or closing one eye | | | | | | | Disorientation | | | | | | | Bothered by movement around you | | | | | | | Bothered by noises in environment | | | | | | | Light sensitivity | | | | | | | Discomfort while reading | | | | | | | Unable to sustain near work/ | | | | | | | reading for adequate periods | | | | | | | General fatigue while reading | | | | | | | Loss of place while reading | | | | | | | Eyes get tired while reading | | | | | | | Headaches | | | | | | | Easily distracted | | | | | | | Decreased attention span | | | | | | | Reduced concentration ability | | | | | | | Difficulty remembering what has been read | | | | | | | Loss of balance | | | | | | | Poor handwriting | | | | | | | Poor posture | | | | | | | Dizziness Pear coordination/ove hand coordination | | | | | | | Poor coordination/eye hand coordination Clumsiness | | | | | | | Ciulisilless | | | | | Ĺ | compared to the normative data. Table 6 compares two components of the Visagraph-based findings, which were found to be statistically different (p<0.05) than grade-level normative data,²⁵ namely reading rate and grade level efficiency. The subject's actual mean school- **Table 5:** Statistically significant findings compared with Morgan's normative values²³ (p<0.05). | Test | N | Morgan's
Normative Data
(mean value) | Present
Findings
(mean value) | |---------------------------|----|--|-------------------------------------| | Near cover test (pd) | 25 | 3 exophoria | 6 exophoria | | NPC break (cm) | 24 | 5.00 | 12.81 | | NPC recovery (cm) | 24 | 7.00 | 19.37 | | PRA (D) | 21 | - 2.37 | -1.51 | | Distance BO recovery (pd) | 20 | 10.00 | 5.90 | | Near BI recovery (pd) | 25 | 13.00 | 10.72 | | Accommodative amplitude | 21 | 10.53* | 6.37 | | Vergence facility (cpm) | 24 | 15.00** | 10.42 | ^{*} Expected mean accommodative amplitude by age of patient (minus lens method) **Table 6:** Statistically significant (p<0.05) measures of Visagraph recordings (n=22) | | Actual Grade
Level | Visagraph
Reading Rate
(grade level
equivalent) | Visagraph
Grade Level
Efficiency* | |--------------------|-----------------------|--|---| | Mean | 10.1 | 5.6 | 6.0 | | Standard Deviation | 1.8 | 3.8 | 4.0 | ^{*}Grade level norms of relative efficiency. (Relative efficiency= rate (wpm)/ fixations per 100 words + regressions per 100 words)²¹ grade level was 10.1, whereas the measured reading speed was grade level 5.25 based on the Visagraph norms, a 45% difference. Similarly, reading grade-level efficiency was 6.0 based on the Visagraph norms, a 40% difference. 68% (15/22) had reading efficiency at least 2 grade levels below their current school grade level, and 82% (18/22) had reading speed at least 2 grade levels below their current school level, based on the Visagraph findings. #### **DISCUSSION** The results of the present study have several new and important clinical implications. It is the first optometric, office-based study investigating the prevalence of these three main oculomotorbased visual diagnoses in the pediatric and young-adult population, with all patients having a medically-based diagnosis of concussion. It ^{**}Vergence facility based on a norm of 15cycles/minute¹⁸ Symbols: pd =prism diopters, D=diopters, cm=centimeters is also the first in this same population and setting to have the objectively-based Visagraph reading eye movement findings analyzed and compared to grade level norms. The objective reading test results revealed a high prevalence of reduced reading speed and efficiency. It has been reported26 that it is common to have cognitive difficulties, such as learning new tasks or remembering previously learned material, after concussion. Add to this the possibility of reduced reading speed and efficiency, and the likelihood of successful return-to-learn (RTL) becomes even more daunting. Furthermore, the high prevalence of these visual problems suggests the need for a comprehensive optometric visual evaluation in post-concussion patients. The results also indicate the need for visual intervention to reduce their symptoms and improve visual function. Treatment may include lenses, prisms, tints, and partial occlusion, as well as concurrent, longer term interventions, such as vision therapy, which has been demonstrated to be highly effective in the adult, concussion/ mTBI population. 11-15,27 The present results are consistent with a recent hospital-based study of Master et al10 in the pediatric population (n=100; ages 11-17 years, mean=14.5 years), with a diagnosis of concussion ranging from less than one month to more than three months after their injury. Those of more recent-onset concussion were more likely to manifest a visual diagnosis. Overall, they found that nearly 70% of their adolescent population had associated abnormal oculomotor findings. In addition, there were related visual diagnoses and symptoms, namely convergence insufficiency (49%), accommodative insufficiency/infacility (51%), and saccadic dysfunction (29%), which is similar in frequency and diagnostic category to the present study. Also, many had more than one of these three clinical oculomotor diagnoses in both studies. This is consistent with an earlier retrospective investigation performed in a clinical, academic setting in adults (n=160) with visual symptoms and a diagnosis of mTBI.¹⁶ The present findings are also similar to the only other optometric, practice-based study, but again this was in an adult concussion/mTBI population,¹⁷ as described earlier. Lastly, our results are in agreement with a host of other studies in the adult population with concussion/mTBI, both in clinical^{10,28} and academic/laboratory^{11-15,29} settings, with patients primarily being in the chronic phase of the brain insult several months to years later. Thus, there is evidence across a wide range of ages and test settings for the high prevalence and persistence of symptomatic oculomotor deficits, in the concussion/mTBI population. The Visagraph findings lend a new and important dimension. Such objective testing of reading ability/reading efficiency has never been performed in a pediatric/young-adult, optometric, practice-based population having medically-based concussion diagnosis. Objective findings are convincing in terms of determining/ demonstrating quantatively the effects of an oculomotor-based visual dysfunction, such as saccadic dysmetria/inaccuracy12,29 on such a universal and naturalistic task, namely reading. In those with the diagnosis of concussion/mTBI, and persistent visual symptoms, oculomotorbased "reading problems" are the most common symptom. 11-15,28 One cannot function efficiently in the modern world with such a debilitating visual problem. Furthermore, presence of basic oculomotor/visual scanning problems will have an adverse impact on other forms of testing and/or remediation, such as cognitive testing/ training incorporating visual scanning and/or fine discrimination tasks. 7.8 There were some potential limitations to the present study. First, it was a retrospectively-based and not a prospectively-based investigation. Second, the sample size was relatively small. Third, it was a skewed population; that is, all patients came to a neuro-optometric rehabilitative practice for a comprehensive vision assessment, as they were all medically-diagnosed as having a concussion with related visual symptoms. Furthermore, they were specifically referred to the first author's private optometric practice because of his experience in working with this population. Lastly, an informative but non-validated symptom survey was used, (Table 4) rather than a validated one, as there is no validated symptom survey for concussion/mTBI patients at this time. There are some important directions for future investigations. First, a more powerful larger prospectively-based and the optometric practice setting should conducted in the pediatric and young-adult populations in those with medically-diagnosed concussion/mTBI, especially for those active in sports where return-to-play (RTP) is frequently a key consideration, as well as educationally for return-to-learn (RTL).²⁶ Second, formal, conventional reading tests, such as the Wide Range Achievement Test (WRAT4), 30 could be incorporated in conjunction with the objectivelybased Visagraph reading testing, along with the binocular/oculomotor clinical testing. Third, the effect of vision therapy should be assessed in this population. Recent retrospective and prospective studies have demonstrated rapid, efficacious, and positive results with oculomotor therapy in the mTBI adult population. 11-14,27,31,32 Larger clinical trials would be very helpful to establish the most effective treatment protocols. Lastly, some simple temporal processing tests should be incorporated to assess more subtle and demanding aspects of visual performance, such as critical flicker frequency (CFF)33,34 and coherent motion,³⁵ in this vulnerable population. In conclusion, there were several vision and reading related deficits that were found in this retrospective study of post-concussion patients. Specifically, the accommodative and vergence dysfunctions were in agreement with earlier studies in academic/clinical centers, as well as those conducted with military personnel. The objective Visagraph recordings, which showed reduction of reading speed and efficiency, are new findings. Together, these findings can be used to help develop visual guidelines to for RTL in post-concussion school-aged children and young adults. #### **REFERENCES** - 1. May, K.H., Marshall, D.L., Burns, T.G., Popoli, D.M. and Polikandriotis, J.A. Pediatric sports and specific return to play guidelines following concussion. International Journal of Sports Physical Therapy 9, 242-255, (2014). - 2. Laker, S.R. Sports-related concussion. Current Pain and Headache Reports 19, 510-513, (2015). - 3. Warden, D. Military TBI during the Iraq and Afghanistan wars. Journal of Head Trauma Rehabilitation 21, 398-402, (2006). - 4. Suchoff, I.B., Ciuffreda, K.J. and Kapoor N. (editors). Visual and Vestibular Consequences of Acquired Brain Injury. Optometric Extension Program Foundation, Santa Ana, CA, (2001). - 5. Suter, P.S. and Harvey, L.H. (editors). Vision Rehabilitation, CRC Press, Taylor and Francis Group, Boca Raton, FL, (2011). - 6. Ciuffreda, K.J. and Ludlam, D.P. Conceptual model of optometric vision care in mild traumatic brain injury. Journal of Behavioral Optometry 22, 10-12, (2011). - 7. Reding, M.J. and Potes, E. Rehabilitation outcome following initial unilateral hemispheric stroke: life table analysis. Stroke 19, 1354-1358, (1998). - 8. Groswasser, W., Cohen, M. and Blankstein, E. Polytrauma associated with traumatic brain injury: incidence, nature, and impact on rehabilitation outcome. Brain Injury 4, 161-166, (1990). - 9. Corwin, D.J. et al. Characteristics of prolonged concussion recovery in a pediatric subspecialty referral population. The Journal of Pediatrics 165, 1207-1215, (2014). - 10. Master, C.L., Scheiman, M., Gallaway, M., Goodman, A., Robinson, R.L., Master, S.R., Grady, M.F. Vision diagnoses are common after concussion in adolescents. Clinical Pediatrics, in press. - Thiagarajan, P. and Ciuffreda, K.J. Effect of oculomotor rehabilitation on accommodative responsivity in mild traumatic brain injury. Journal of Rehabilitation Research and Development 51, 175-191, (2014). - 12. Thiagarajan, P. and Ciuffreda, K.J. Versional eye tracking in mild traumatic brain injury (mTBI): effects of oculomotor training (OMT). Brain Injury 28, 430-443, (2014). - 13. Thiagarajan, P. and Ciuffreda, K.J. Effect of oculomotor rehabilitation on vergence responsivity in mild traumatic brain injury. Journal of Rehabilitation Research and Development 50, 1223-1240, (2013). - Thiagarajan, P., Ciuffreda, K.J., Capo-Aponte, J.E., Ludlam, D.P. and Kapoor, N. Oculomotor rehabilitation for reading in mild traumatic brain injury (mTBI): an integrative approach. NeuroRehabilitation 34, 129 -146, (2014). - 15. Thiagarajan, P., Ciuffreda, K.J. and Ludlam, D.P. Vergence dysfunction in mild traumatic brain injury (mTBI): a review. Ophthalmic and Physiological Optics 31, 456-468, (2011). - 16. Ciuffreda, K.J., Kapoor, N., Rutner, D., Suchoff, I.B., Han, M.E. and Craig, S. Occurrence of oculomotor dysfunctions in acquired brain injury; a retrospective analysis. Optometry 78, 155-161, (2007). - 17. Hellerstein, L.F., Freed, S. and Maples, W.C. Vision profile of patients with mild traumatic brain injury. Journal of the American Optometric Association 66, 634-639, (1995). - 18. Benjamin, W.J. (editor) Borish's Clinical Refraction, 2nd ed., Butterworth-Heinemann, Oxford (UK), (2006). - 19. Scheiman, M. and Wick, B. Clinical Management of Binocular Vision. Lippincott, 4th edition, Philadelphia, (2013). - 20. Ciuffreda, K.J. Near point of convergence as a function of target accommodative demand. Optical Journal and Review of Optometry 111, 9-10, (1974). - 21. Ciuffreda, M.A., Ciuffreda, K.J. and Santos, D. Visagraph baseline analysis and procedural guidelines. Journal of Behavioral Optometry 14, 60-68, (2003). - 22. Tannen, B. and Ciuffreda, K.J. A proposed addition to the standard protocol for the Visagraph™ eye movement recording system. Journal of Behavioral Optometry 18, 143-147, (2007). - 23. Abdi H. Holm's sequential Bonferroni procedure. In: Salkind, Neil (ed.) Encyclopedia of Research Design, Sage, Thousand Oaks, CA, (2010). - 24. Morgan, M.W. The clinical aspects of accommodation and convergence. American Journal of Optometry and the Archives of the American Academy of Optometry 21, 183-195, (1944). - 25. Taylor, E.A. The Fundamental Reading Skill. Charles C. Thomas, Springfield, IL, (1966). - 26. Halstead M.E. et al. Returning to learning following a concussion. Pediatrics 132, 948-957, (2013). - 27. Ciuffreda, K.J., Han, Y. Kapoor, N. and Ficarra, A.P. Oculomotor rehabilitation for reading in acquired brain injury. NeuroRehabilitation 21, 9-21, (2006). - 28. Craig, S. Kapoor, N., Ciuffreda, K.J., Suchoff, I.B., Han, M.E. and Rutner, D. Profile of selected aspects of visually-symptomatic individuals with acquired brain injury. Journal of Behavioral Optometry 19, 7-10, (2008). - 29. Ron, S. Najenson, T., Hary, D. and Pryworkin, W. Eye movements in brain damaged patients. Scandinavian Journal of Rehabilitation Medicine 10, 39-44, (1978). - 30. Wilkinson, G. S., & Robertson, G. J. (2006). Wide Range Achievement Test 4 Professional Manual. Lutz, FL: Psychological Assessment Resources. - 31. Ciuffreda, K.J., Suchoff, I.B., Marrone, M.A. and Ahmann, E. Oculomotor rehabilitation in traumatic brain-injured patients. Journal of Behavioral Optometry 7, 31-38, (1996). - 32. Ciuffreda, K.J., Rutner, D., Kapoor, N., Suchoff, I.B., Craig, S. and Han, M.E. Vision therapy for oculomotor dysfunctions in acquired brain injury: a retrospective analysis. Optometry 79, 18-22, (2008). - 33. Werner, H. and Thuma, B.D. Critical flicker frequency in children with brain injury. The American Journal of Psychology 55, 394-399, (1942). - 34. Tannen, B., Desmond, A.M., Shelley-Tremblay, J., Ciuffreda, K.J. and Larson, S.M. Correlation of magnocellular function with measurements of reading in children. Vision Development and Rehabilitation, 1,109-118, (2015). - 35. Patel, R., Ciuffreda, K.J., Tannen, B. and Kapoor, N. Elevated coherent motion thresholds in mild traumatic brain injury. Optometry 82, 284-289, (2011). ## PACIFIC UNIVERSITY COLLEGE OF OPTOMETRY # TENURE-TRACK FACULTY POSITION AVAILABLE Pacific University, a prestigious private institution that blends a College of Optometry, College of Health Professions, College of Education, College of Business and a College of Arts & Sciences, is located in the Portland metropolitan area, one hour from the Cascade Mountains and Pacific Ocean. Optometry and MS/PhD students enjoy a rich educational environment, learning full-scope optometry with state-of-the-art educational, research and clinical technology. Pacific University College of Optometry is seeking applicants for a tenure-track faculty position with emphasis in binocular vision, pediatrics and vision therapy rehabilitation, and interest in research. Classroom, laboratory, and clinical assignments will reflect OD and/or MS/PhD programmatic needs, as well as the successful candidate's expertise and interests. The successful candidate will have the OD degree and be eligible for licensure to practice optometry in the State of Oregon. Preference will be given to applicants with an advanced degree, residency/fellowship training, and/or advanced professional development. A commitment to excellence in optometric education, lifelong learning, and the expansion of knowledge through optometric research is essential. Candidates should submit a letter of application, a current, comprehensive curriculum vitae, and three references to: Karl Citek, OD, PhD, FAAO Chair of Search Committee Pacific University College of Optometry 2043 College Way Forest Grove, OR 97116 citekk1@pacificu.edu The review of applications will begin January 29, 2016 and continue until the position is filled. # pacificu.edu/optometry **EQUAL OPPORTUNITY EMPLOYER** ARTS & SCIENCES | OPTOMETRY | EDUCATION | HEALTH PROFESSIONS | BUSINESS